

Mllan, October 2, 2019

Optimal Resource Allocation of Cloud-Based Spark Applications

Organized by

Under the patronage of

Sponsored by

AGID Agenzia per l'Italia Digitale

Motivations

Target scenario and goals

Performance models and Resource optimization

Experimental Results

Conclusions & Future Works

- The big data paradigm is consolidating its central position in the industry, as well as in society at large
- Market growth from \$130 billion in 2016 to \$203 billion in 2020, with a CAGR of 11.9 %
- Cloud computing is an enabling cost-effective technology for big data
 - IDC estimates that by 2020 nearly 40% of big data analyses will be supported by public clouds

 Big data applications: heterogeneous and irregular data access and computational patterns

₽

 Cloud computing: offers flexibility, dynamically adjusting resources as needed

Develop intelligent resource management systems providing QoS guarantees to end-users and efficient use of resources

- Virtualization technologies provide means to setup a wide number of possible configurations that can be allocated for an application
 - ▶ Type of processing node, # cores, etc.

Which configuration should we choose to avoid under and overestimating resources?

How can we predict the execution time of an application running on a target configuration?

Predict execution time given an amount of resources available

Optimize computational resources given target deadline

How can we predict the execution time of an application running on a target configuration?

Predict execution time given an amount of resources available

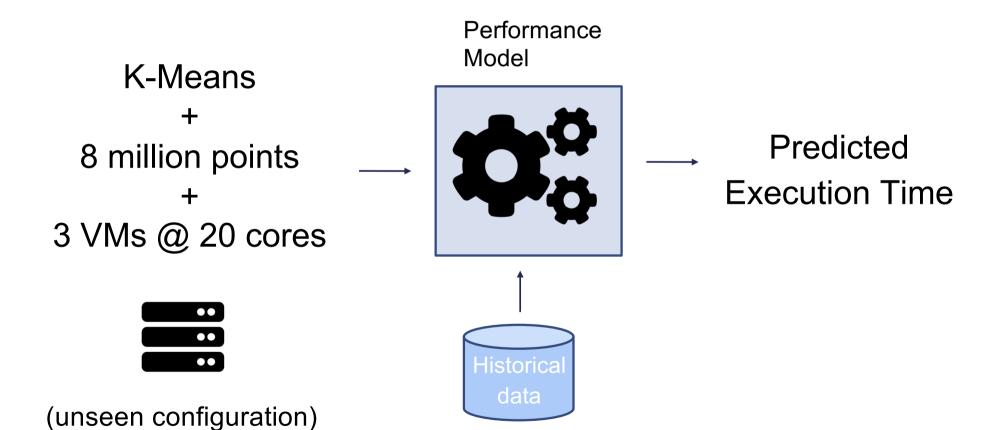
Optimize computational resources given target deadline

How can we predict the execution time of an application running on a target configuration?

Machine Learning	Analytical Models	Simulation								
Optimize co	Optimize computational resources given									
	target deadline									

Our Approach: Performance profiling

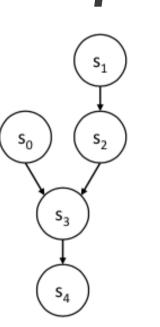
🎯 📐 👰 🔀 🗙



Focus: Apache Spark Applications

Distributed general-purpose cluster-computing framework

- Has support in the biggest cloud services (Amazon AWS, Azure, Google Cloud)
- Application execution represented by a DAG
 - ▶ Parallel stages
 - Parallel tasks execution in each stage



-@-

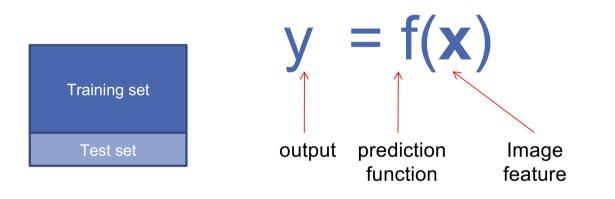
 (\mathcal{C})

What is Machine Learning?

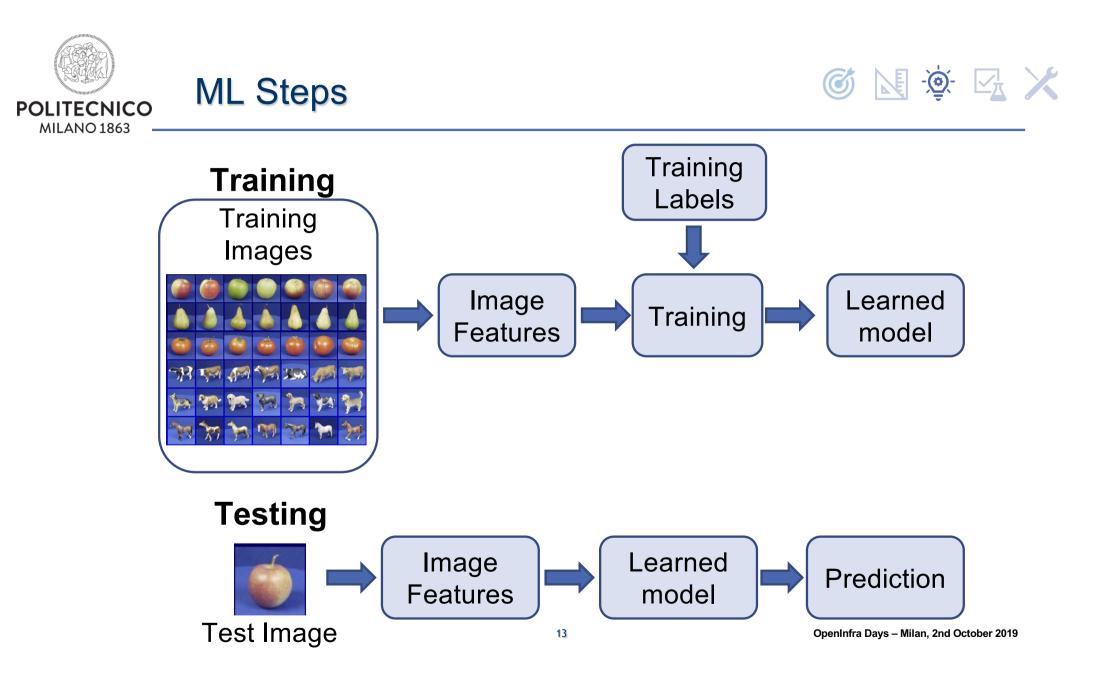
Humans learn from past experiences

 \mathbf{O}

- A computer does not have "experiences"
 A computer system learns from data, which represent some "past experiences" of an application domain
- Goal: learn a target function that can be used to predict the values of
 - a discrete class attribute, e.g., approve or not-approved, and high-risk or low risk (discrete world)
 - a continuous value, e.g., flight delays, cash at a bank branch/ATM (continuous setting)



- Training: given a training set of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)



ERNEST model (proposed by Spark creators)

- Linear Regression with Non Negative Least Squares
- Input features based on # cores and data size

Can we do better by exploring other regression techniques and/or input features?

Can we do better with Analytical techniques?

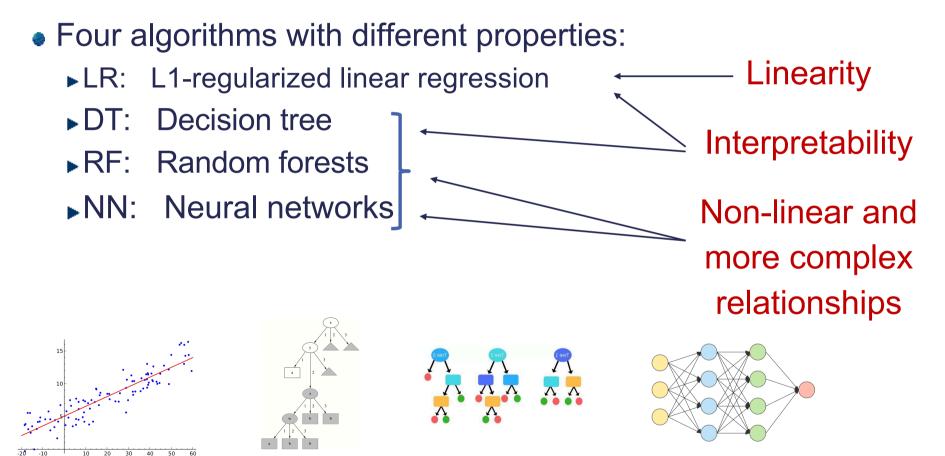
S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica, "Ernest: Efficient performance prediction for large-scale advanced analytics." in *NSDI*, 2016, pp. 363–378.

Our Performance Approaches

- ML models compute very fast estimations with good approximations
 - Number of cores, tasks time and number per stage
 - Black and gray box models
 - Used by optimization methods to compute quickly initial solutions
- Approximate analytical techniques (*Lundstrom*) provide more accurate results but are slower
 - Distribution of the tasks execution time within individual stages
 - Task execution overlaps
 - Used at runtime under heavy load
- Discrete event simulator (*dagSim*) produces accurate results at the cost of longer execution times
 - Used for initial deployment, offline

D. Ardagna, E. Barbierato, A. Evangelinou, E. Gianniti, M. Gribaudo, T. B. M. Pinto, A. Guimarães, A. P. Couto da Silva, J. M. Almeida. Performance Prediction of Cloud-Based Big Data Applications. ICPE 2018 Proceedings. 192-199. Berlin, Germany.

Our ML Approaches



Model	Features
Ernest	Ratio of data size to number of coresLog of number of cores
Ernest	 Square root of ratio of data size to number of cores Ratio of squared data size to number of cores

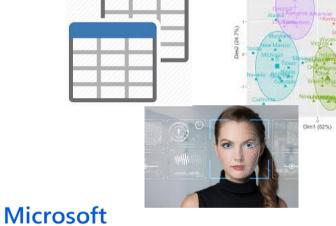
Model	Features	
Ernest	 Ratio of data size to number of cores Log of number of cores Square root of ratio of data size to number of cores Ratio of squared data size to number of cores 	
Black box models	 Ratio of data size to number of cores Log of number of cores Data size Number of cores Number of TensorFlow cores (SparkDL only) 	Information available a priori

Model	Features]
Ernest	 Ratio of data size to number of cores Log of number of cores Square root of ratio of data size to number of cores Ratio of squared data size to number of cores 	
Black box models	 Ratio of data size to number of cores Log of number of cores Data size Number of cores Number of TensorFlow cores (SparkDL only) 	
Gray box models	 All black box models features and: Number of tasks Max/avg time over tasks Max/avg shuffle time Max/avg number of bytes transmitted between stages Inverse of number of TensorFlow cores (SparkDL only) 	Information available only a posteriori: Use average values of training examples OpenInfra Days - Milan, 2nd October 2019

- **TPC-DS** benchmark ۲
- Sparkbench
- SparkDL: deep learning application based on DL pipelines ۲
- Cluster configurations: ۲
 - Public Microsoft Azure cloud
 - Private IBM Power8 cluster
- ML scenarios: ۲
 - Core interpolation
 - Core interpolation + data extrapolation

A. Maros, F. Murai, A. P. Couto da Silva, J. M. Almeida, M. Lattuada, E. Gianniti, M. Hosseini, D. Ardagna. Machine Learning for Performance Prediction of Spark Cloud Applications. IEEE Cloud 2019 Proceedings. 99-106. Milan, Italy.

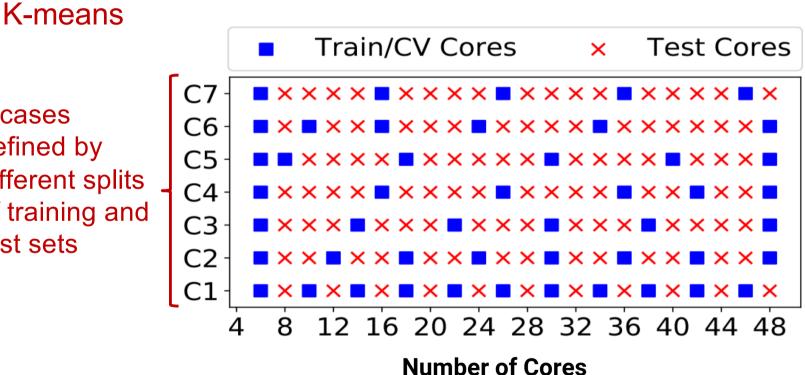
Azure



Cluster plo

ML Core Interpolation: Training and Test Sets

7 cases defined by different splits of training and test sets



Data sizes in training and test sets

Workload	Core Inter	polation	Data Extrapolation		
WOIKIOad	Training	Test	Training	Test	
Query 26 [GB]	750	750	250, 750	1000	
K-means [Rows]	15	15	5, 10, 15	20	
SparkDL [Images]	1500	1500	1000, 1500	2000	

Data sizes in training and test sets

Core Inter	polation	Data Extrapolation		
Training	Test	Training	Test	
750	750	250, 750	1000	
15	15	5, 10, 15	20	
1500	1500	1000, 1500	2000	
	Training 750 15	750 750 15 15	Training Test Training 750 750 250, 750 15 15 5, 10, 15	

How accurate are predictions if we use different number of cores for training and and testing (but same data set size)?

Data sizes in training and test sets

Core Inter	polation	Data Extrapolation		
Training	Test	Training	Test	
750	750	250, 750	1000	
15	15	5, 10, 15	20	
1500	1500	1000, 1500	2000	
	Training 750 15	750 750 15 15	TrainingTestTraining750750250, 75015155, 10, 15	

How accurate are predictions if we use different data set sizes and number of cores for training and and testing?

25

		Gray Box Models				Black Box Models				Ernest
		DT	LR	NN	RF	DT	LR	NN	RF	
Г	C1	20.6	63.4	12.3	18.8	8.4	1.0	6.7	2.4	1.5
Splits of	C2	16.7	72.6	16.1	19.9	7.9	1.2	20.1	6.0	1.6
	C3	18.0	98.5	36.3	18.9	11.2	1.2	3.1	8.0	1.7
training and -	C4	21.7	300.6	18.9	27.2	12.9	1.1	4.4	9.7	1.6
test sets	C5	35.7	229.7	30.8	35.0	12.5	1.2	23.0	12.0	1.6
	C6	27.0	414.1	26.3	32.3	8.9	1.2	5.4	6.9	1.7
										· · · · · ·

New approaches

Reference

-0-

 \bigcirc

 $\square \times$

model

	0	Fray Box	Model	Models Black Box Models				
	DT	LR	NN	RF	DT	LR	NN	RF
C1	20.6	63.4	12.3	18.8	8.4	1.0	6.7	2.4
C2	16.7	72.6	16.1	19.9	7.9	1.2	20.1	6.0
C3	18.0	98.5	36.3	18.9	11.2	1.2	3.1	8.0
C4	21.7	300.6	18.9	27.2	12.9	1.1	4.4	9.7
C5	35.7	229.7	30.8	35.0	12.5	1.2	23.0	12.0
C6	27.0	414.1	26.3	32.3	8.9	1.2	5.4	6.9

• Black box models outperform gray box solutions

 (\mathcal{O})

X

	(Fray Box	Model	Bl	ack Bo	ox Mod	els	
	DT	LR	NN	RF	DT	LR	NN	RF
C1	20.6	63.4	12.3	18.8	8.4	1.0	6.7	2.4
C2	16.7	72.6	16.1	19.9	7.9	1.2	20.1	6.0
C3	18.0	98.5	36.3	18.9	11.2	1.2	3.1	8.0
C4	21.7	300.6	18.9	27.2	12.9	1.1	4.4	9.7
C5	35.7	229.7	30.8	35.0	12.5	1.2	23.0	12.0
C6	27.0	414.1	26.3	32.3	8.9	1.2	5.4	6.9

• Simple black box LR approach is the best approach

 (\mathcal{O})

	(Fray Box	Model	s	Bl	Ernest			
	DT	LR	NN	RF	DT	LR	NN	RF	
C1	20.6	63.4	12.3	18.8	8.4	1.0	6.7	2.4	1.5
C2	16.7	72.6	16.1	19.9	7.9	1.2	20.1	6.0	1.6
C3	18.0	98.5	36.3	18.9	11.2	1.2	3.1	8.0	1.7
C4	21.7	300.6	18.9	27.2	12.9	1.1	4.4	9.7	1.6
C5	35.7	229.7	30.8	35.0	12.5	1.2	23.0	12.0	1.6
C6	27.0	414.1	26.3	32.3	8.9	1.2	5.4	6.9	1.7

 Simple black box LR approach is the best approach (a bit better than Ernest)

OpenInfra Days - Milan, 2nd October 2019

 (\mathbf{C})

(\$)

MILANO 1863

Q-26 Data Extrapolation POLITECNICO (250 and 750 GB for training; 1000 GB for testing)

	G	ray Bo	x Mode	ls	Bl	Ernest			
	DT	LR	NN	RF	DT	LR	NN	RF	Linest
C1	38.2	28.6	7.0	39.6	15.6	3.9	9.9	19.4	7.5
C2	42.5	23.5	24.8	33.6	16.0	4.0	10.3	16.6	7.4
C3	39.0	36.7	11.2	37.2	21.1	3.7	7.8	19.0	7.3
C4	42.2	33.3	13.5	35.4	25.5	4.0	25.4	23.5	7.3
C5	32.5	12.4	9.8	35.1	19.0	4.4	31.8	17.3	7.6
C6	37.0	24.8	24.8	37.3	17.3	4.9	18.1	19.5	8.0

Similar conclusions •

 $\square \times$

-

 \bigcirc

K-means Core Interpolation POLITECNICO (15 Million points for training and test sets)

MILANO 1863

		Gray Bo	x Models		B	lack Bo	x Mode	els	Ernest
	DT	LR	NN	RF	DT	LR	NN	RF	Linest
C1	27.7	184.3	77.9	24.8	16.0	50.8	38.3	5.0	126.7
C2	28.7	225.0	109.6	54.7	16.9	46.3	18.1	13.7	148.1
C3	22.9	278.3	435.7	26.0	18.5	42.1	10.3	14.0	161.3
C4	33.8	300.6	445.1	26.3	21.4	41.9	23.6	14.2	176.5
C5	27.1	543.4	1146.1	22.5	22.9	42.3	31.3	19.3	187.0
C6	33.9	414.1	170.8	91.3	15.2	48.2	10.6	12.0	159.9
C7	22.6	363.1	626.0	31.3	17.4	41.8	33.2	14.8	178.1

K-means Core Interpolation

POLITECNICO MILANO 1863

(15 Million points for training and test sets)

		Gray Bo	x Models		Black Box Models				Ernest
	DT	LR	NN	RF	DT	LR	NN	RF	Ernest
C1	27.7	184.3	77.9	24.8	16.0	50.8	38.3	5.0	126.7
C2	28.7	225.0	109.6	54.7	16.9	46.3	18.1	13.7	148.1
C3	22.9	278.3	435.7	26.0	18.5	42.1	10.3	14.0	161.3
C4	33.8	300.6	445.1	26.3	21.4	41.9	23.6	14.2	176.5
C5	27.1	543.4	1146.1	22.5	22.9	42.3	31.3	19.3	187.0
C6	33.9	414.1	170.8	91.3	15.2	48.2	10.6	12.0	159.9
C7	22.6	363.1	626.0	31.3	17.4	41.8	33.2	14.8	178.1

 Ernest is not able to capture greater complexity of the workload

K-means Core Interpolation

POLITECNICO (15 Million points for training and test sets)

		Gray Bo	x Models		Black Box Models			
	DT	LR	NN	RF	DT	LR	NN	RF
C1	27.7	184.3	77.9	24.8	16.0	50.8	38.3	5.0
C2	28.7	225.0	109.6	54.7	16.9	46.3	18.1	13.7
C3	22.9	278.3	435.7	26.0	18.5	42.1	10.3	14.0
C4	33.8	300.6	445.1	26.3	21.4	41.9	23.6	14.2
C5	27.1	543.4	1146.1	22.5	22.9	42.3	31.3	19.3
C6	33.9	414.1	170.8	91.3	15.2	48.2	10.6	12.0
C7	22.6	363.1	626.0	31.3	17.4	41.8	33.2	14.8

Once again, black box models outperform gray box solutions

K-means Core Interpolation

POLITECNICO (15 Million points for training and test sets)

		Gray Bo	x Models		B	Black Box Models			
	DT	LR	NN	RF	DT	LR	NN	RF	Ernest
C1	27.7	184.3	77.9	24.8	16.0	50.8	38.3	5.0	126.7
C2	28.7	225.0	109.6	54.7	16.9	46.3	18.1	13.7	148.1
C3	22.9	278.3	435.7	26.0	18.5	42.1	10.3	14.0	161.3
C4	33.8	300.6	445.1	26.3	21.4	41.9	23.6	14.2	176.5
C5	27.1	543.4	1146.1	22.5	22.9	42.3	31.3	19.3	187.0
C6	33.9	414.1	170.8	91.3	15.2	48.2	10.6	12.0	159.9
C7	22.6	363.1	626.0	31.3	17.4	41.8	33.2	14.8	178.1

 Black box RF is the best approach, capturing non-linear relationships

K-means Data Extrapolation

POLITECNICO (5, 10, 15 Million points for training; 20 Million for testing)

	6	Fray Bo	x Model	s	B	lack Bo	x Mode	els	Ernest
	DT	LR	NN	RF	DT	LR	NN	RF	Entest
C1	24.0	20.2	22.9	27.1	19.8	40.0	32.5	12.5	93.4
C2	35.6	16.0	121.3	20.7	14.5	39.6	29.1	16.5	107.8
C3	66.7	31.9	134.1	32.6	14.4	41.4	28.0	16.5	119.6
C4	28.8	24.2	118.9	25.8	13.3	31.8	68.4	16.0	127.9
C5	42.0	34.0	27.5	26.7	15.3	25.7	60.0	19.5	121.4
C6	75.7	37.7	37.1	24.2	11.0	52.6	26.7	14.9	109.8
C7	32.6	43.1	148.1	42.6	20.8	34.5	96.4	17.9	129.5

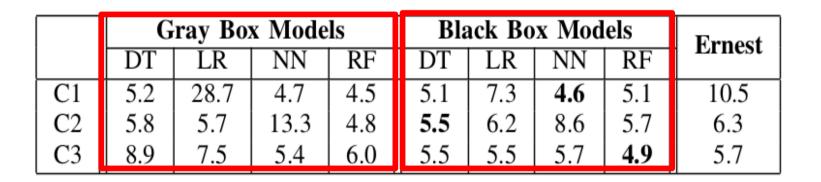
• Ernest performs poorly again

K-means Data Extrapolation

POLITECNICO (5, 10, 15 Million points for training; 20 Million for testing)

	6	Fray Bo	x Model	s	B	lack Bo	x Mod	els	Ernest
	DT	LR	NN	RF	DT	LR	NN	RF	Ernest
C1	24.0	20.2	22.9	27.1	19.8	40.0	32.5	12.5	93.4
C2	35.6	16.0	121.3	20.7	14.5	39.6	29.1	16.5	107.8
C3	66.7	31.9	134.1	32.6	14.4	41.4	28.0	16.5	119.6
C4	28.8	24.2	118.9	25.8	13.3	31.8	68.4	16.0	127.9
C5	42.0	34.0	27.5	26.7	15.3	25.7	60.0	19.5	121.4
C6	75.7	37.7	37.1	24.2	11.0	52.6	26.7	14.9	109.8
C7	32.6	43.1	148.1	42.6	20.8	34.5	96.4	17.9	129.5

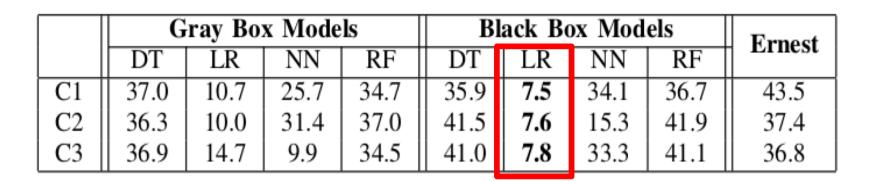
• Overall: black box DT and RF best approaches



Black box models are usually better than gray box approaches

 (\mathcal{O})

-(\$)



• Black box LR is the overall best approach

 (\mathcal{O})

-(\$)-

Lundstrom and dagSim results

Lundstrom dagSim Q-26 12 5.5 4.4 16 6.7 9.7 20 9.1 11.8 24 11.0 11.9 28 11.7 16.2 32 13.5 14.7 16.3 5.2 36 40 17.6 6.0 19.3 3.5 44 48 20.7 -0.1 52 17.6 -0.4

Cores

K-means	Cores Data set size (GB)		Lunds	strom	dagSim	
					_	
	24	8		17.3	23.6	
	24	48		5.0	-6.5	
	24	96		1.9	8.5	
	48	8		18.1	22.1	
	48	48		8.3	-12.4	
	48	96		3.6	-25.6	

 (\mathfrak{O})

Query	Quartile	dagSim [s]	Real [s]	ε _r [%]
Q26	Q_1	492.496	515.449	4.66
Q26	Q_2	495.077	537.436	8.56
Q26	Q_3	497.800	597.302	19.99
Q52	Q_1	509.974	509.810	0.03
Q52	Q_2	511.676	515.547	0.76
Q52	Q_3	513.454	520.582	1.39
		40		

OpenInfra Days - Milan, 2nd October 2019

 $\square \times$

-@-

How can we predict the execution time of an application running on a target cloud configuration?

Predict execution time given an amount o	f
resources available	

Ontimal doployment	Rebalancing under
Optimal deployment	heavy load

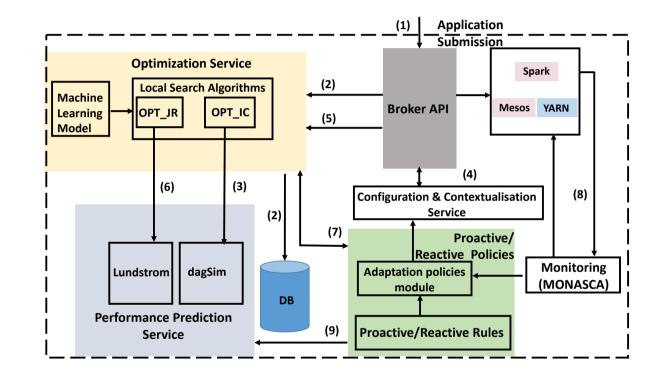
Optimal deployment

os 💽 💿 🔀 🗶

- Identifying the Initial Configuration
 - 1. Identify the minimum number of VMs for an application to fulfill its deadline
 - 2. Periodically estimate application capacity according to its progress
- Resource Rebalancing under Heavy
 Load
 - 1. Prioritize resources to hard deadline applications and reallocate the residual capacity among soft deadline ones
 - 2. Minimize weighted tardiness

• MINLP

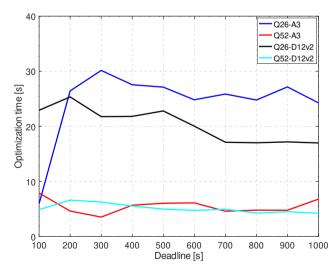
Local search



Experimental results – Initial configuration 🕅 🔯 🖾 🗶

Q-26 ϵ_e [%] $\epsilon_p \ [\%]$ D[s] c^{r} c^{e} c^{p} 661 1216-33.3316-33.3355316160.00160.002020454200.000.00240.0024386240.0028280.002414.2935432322812.503040.0036 2443640-11.110.00402254044-10.000.001994448-9.09440.00

K-means	$D[\mathbf{s}]$	c^{r}	c^{e}	$\epsilon_e ~[\%]$	c^{p}	$\epsilon_p [\%]$
	4,386	8	4	50.00	8	0.00
	1,934	12	6	50.00	12	0.00
	718	16	18	-12.50	18	-12.50
	428	20	28	-40.00	22	-10.00
	362	24	32	-33.33	24	0.00
	317	28	38	-35.71	28	0.00
	284	32	42	-31.25	12	-31.25
	259	36	46	-27.78	16	-27.78
	240	40	50	-25.00	18	-20.00
	229	44	52	-18.18	18	-9.09



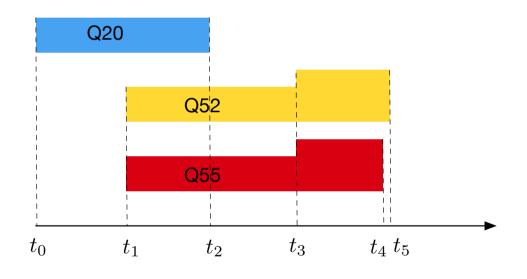
Experimental results – Resource rebalancing 🖉 🖄 🔀

Test	Size	Of_{real} [s]	Of_e [s]	ϵ_e [%]	Of_j [s]	ϵ_j [%]
Test1	small	666396	666396	0.00	666396	0.00
Test1	large	446025	494255	10.81	466654	4.62
Test2	small	0	0	0.00	0.00	0.00
Test2	large	0	214608	$+\infty$	0.00	0.00
Test3	small	3115221	3505957	12.54	115221	0.00
Test3	large	1891436	2188250	15.69	966587	3.97
Test4	small	1340295	1866892	39.29	340295	0.00
Test4	large	606460	1476138	143.40	756368	24.72 ·
Test5	small	135637	253209	86.68	135637	0.00
Test5	large	820166	1263198	54.02	948275	15.62
Test6	-	885533	2699995	204.90	239210	39.94

with 4 threads.

Test	Size	ST Time [s]	MT(2) Time [s]	2) SU	MT(4) Time [c]) SU
Test1 Test1 Test2 Test2 Test3 Test3	small large small large small large	$\begin{array}{c} 30.13 \\ 39.01 \\ 27.01 \\ 36.00 \\ 32.01 \\ 42.14 \end{array}$	$17.09 \\28.90 \\14.64 \\26.74 \\19.10 \\31.19$	$ 1.76 \\ 1.35 \\ 1.84 \\ 1.35 \\ 1.78 \\ 1.73 $	$ \begin{array}{r} 16.12\\ 21.14\\ 13.00\\ 19.12\\ 17.21\\ 24.90 \end{array} $	1.87 1.85 2.08 1.88 1.86 1.69
Test4 Test4 Test5 Test5 Test6	small large small large -	$ \begin{array}{r} 29.00 \\ 39.13 \\ 48.10 \\ 52.02 \\ 82.36 \\ \end{array} $	$ \begin{array}{r} 16.26\\ 22.68\\ 27.90\\ 32.01\\ 49.34 \end{array} $	$ 1.72 \\ 1.63 \\ 1.67 \\ 1.63 \\ 1.67 \\ 1.67 $	$ \begin{array}{r} 15.15 \\ 20.13 \\ 22.23 \\ 27.18 \\ 38.34 \end{array} $	1.91 1.94 2.16 1.91 2.15

MS Azure deployment



Real	system:	
21%	gap	

Conclusions and Future Work

- Performance models and online resource allocation of Spark big data applications
- Average percentage error in computing the minimum capacity is around 7% while the average percentage error in re-balancing about 12%
- Resource provisioning of continuous applications

Colleagues at Polimi & Universidad Federal de Minas Gerais: Marco Lattuada, Eugenio Gianniti, Marco Gribaudo, Enrico Barbierato, Marjan Hosseini, Alexandre Maros, Fabrício Murai, Ana Paula Couto da Silva, Jussara M. Almeida

EUROPE - BRAZIL COLLABORATION OF BIG DATA SCIENTIFIC RESEARCH THROUGH CLOUD-CENTRIC APPLICATIONS

European and Brazilian Research Innovation Action projects, within the H2020 program, in the field of Cloud Computing

